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The flow field in the nose region of a blunt body in hypersonic flow is studied by 
considering the transport of vorticity and enthalpy. The entire region between 
body and shock is considered to be viscous, not necessarily thin in comparison 
with the nose radius of the body and to be of slowly varying density. The (given) 
post-shock vorticity need not be small and the density ratio p,lp, may either be 
small or near unity, the analysis being valid asymptotically at  both limits. 

It is foundthat the vorticity equationmay be uncoupled from the total enthalpy 
equationifpJp is constant. While the equations are not expected to be necessarily 
restricted to the immediate vicinity of the stagnation line, only there can the 
solution be written down explicitly; elsewhere, numerical integration is required. 

1. Introduction 
The problem of the interaction of the external flow field with the flow in the 

boundary layer of blunt bodies in hypersonic flow has been analysed (Hayes & 
Probstein 1959; Cheng 1961,1963) as an extension of boundary-layer theory; the 
boundary-layer solution is matched in a suitable manner to the non-uniform 
flow produced by the curved bow shock wave. Bush (1964) has shown that, for 
consistency, one requires to divide the region between body and shock into 
several layers, adjacent layers requiring individual matching. 

The object of the following analysis is to obtain a single, approximate repre- 
sentation of the flow field valid everywhere between body and shock, thus 
obviating internal matching problems. This is done by considering the distribu- 
tion of vorticity in the flow, which is to be considered viscous everywhere. The 
advantages are, first, there is no explicit pressure dependence in the vorticity 
equation, secondly, the post-shock vorticity distribution provides a simple 
boundary condition not requiring the simultaneous solution of two equations, 
which is required if the problem is tackled in terms of momentum distributions. 
The disadvantage is that the equation governing the distribution of vorticity 
cannot be expressed solely in terms of vorticity , compressibility effects aside; 
the velocity components appear explicitly in the inertia terms. This difficulty is 
circumvented by applying a transformation which is essentially the well-known 
von Mises transformation, which removes the offending terms, but recreates the 
difficulty in the viscous terms. We then utilize a device constructed by Lighthill 
(1950) specifically to deal with this latter problem. An unforseen advantage of 
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this manoeuvre is that the coupling between the vorticity and enthalpy fields 
occurs through the combination p&; since, for constant pressure and ignoring 
non-equilibrium effects, this is constant to within 5 % for air between 500 "K and 
12,000"K (see, for example, Hansen 1959) and, for a perfect gas, is dependent 
only on the square root of the pressure, choosing a suitable mean value uncouples 
the vorticity and enthalpy equations. 

Since the region over which the analysis is applied is not necessarily a thin 
layer, the equations are formulated in terms of an orthogonal co-ordinate system 
having the body and the shock as members of one of its families. As a result we 
may write down the solution only in the immediate neighbourhood of the 
stagnation line; elsewhere in the region of validity of the assumptions, we require 
to solve the equations numerically. 

2. The vorticity equation 

written as 
The equations governing the motion of a steady compressible fluid may be 

v. (pv) = 0, 

-pv x w + ipVv2 = - vp ++V(pV. v) + V(v. Vp) 

- vv2p + v p  x w - (V .v) vp 

-VxVx(pv) ,  

where 0 = V x v, together with an equation governing enthalpy transport. 
Taking the curl of the equation we see that the corresponding equation for the 
vorticity is 

-v X (PV X 0 )  i vp  X v V 2  = -v  X (Vv2,U) + v  X ( V , L L A h )  

- v x {(V . v) vp> 

-v x v x v x (pv). (1) 

In a general orthogonal co-ordinate system with length element ds2 = sh: dxi, 

and restricting the analysis to two-dimensional or axisymmetric flows so that 
u, = 0,  a/ax3 = 0, (1) becomes 

i 

- 1 [ - a { __- h2 a ( -__ h3" P%)]+ a [ hi a ( "%))I h,h, ax, h3h,axl h,h, h, ax, h,i~,ax, h,h, h, 

- {V x (vv2P))3 + {V x (VP x 4:3, 

where we note that w1 = w2 = 0 and where we have neglected derivatives of the 
density. If we define S by the equation 
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and let 

then we have 

We define the stream function $ by the, equations 

with $ = 0 on the body. We take hldxl to be the element of distance along 
members of a one parameter family of curves of which the shock wave and the 
body are members. Let Y be the parameter where we define Y to be where 
$s is the value of $ on the upstream side of the shock wave at a given value of x, ; 
$s is then B function of xl only. Lines of constant Y are shown in figure 1. We take 
h, dx, to be the distance element along members of the orthogonal net. 

FIGURE 1. Lines of constant Y. 

We transform from co-ordinates (xl, x,) to (xl, Y) retaining velocities conjugate 
to x1 and x,. In  this transformation a/az, is replaced by 

and alax, by (pah,ul/$s) alaY. (2) then gives 

Near Y = 0,  

from which, near Y = 0, we see that 

u1 2 4PPS fi(x1,O) YIP). 
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Inserting this expression in the right-hand side of (3) we have 

This is essentially Lighthill’s (1950) device for removing the awkward u1 produced 
by the von Mises transformation. He found that the approximation was adequate 
in favourable pressure gradients. He pointed out that the approximation is good 
near the body surface, but cannot really be expected to hold elsewhere, but that, 
where the approximation is bad, the whole term in which it is contained is small, 
so that the resulting error may be expected to be small also. In  our case, we would 
hope that the approximation was adequate if a(Y4 aQ/aY!)/8Y’ was small away 
from Y = 0. 

Now ,uJp is constant to within 5 yo for equilibrium air between 500 OK and 
12,000 O K  a t  constant pressure, and varies only as the square root of the pressure 
for a perfect gas. Thus if we replace ,u& by a suitable mean value, we may 
uncouple the vorticity equation from the enthalpy equation. 

The enthalpy equation may be treated in an exactly similar manner provided 
the Prandtl number is unity, so that terms involving squares of velocities do not 
appear. Total enthalpy and vorticity obey the same field equations, but of course 
satisfy different boundary conditions. Lighthill pointed out that when this device 
is applied to the enthalpy equation (he actually applied it to the temperature 
equation) it holds asymptotically for large values of the Prandtl number. He 
found, however, that the agreement was still good a t  a Prandtl number of unity. 

3. Orders of magnitude 
We introduce the ratio e = pm/ps = (y- l ) / (y+ l ) ,  postulate that e is small, 

and that aQ/ax,= O(eaLl/ax,). Since we have assumed that density variations 
between body and shock-wave are negligibly small, which only requires that 
ap/ax, = O(eps/L), where L is a typical dimension in the x1 direction, we take 
variations in ,u to be negligible in the same sense; this seems plausible on physical 
grounds. Then, considering the magnitude of terms in (pu,/it,) S, we see that they 
are at most of order E times the first term on the right-hand side of (2) and there- 
fore are to be neglected in comparison with it. 

We note that the result of applying this order-of-magnitude analysis is an 
equation identical to that which would have been produced by a boundary-layer 
analysis, which would be valid in rather different circumstances; the same terms 
would have been discarded, but for a different reason. However, if instead of 
putting a/axl = O(E ajax,) we put a/ax, = O(e6ea/ax,), where 6is the dimensionless 
thickness of the boundary layer and c is some exponent greater than zero, then 
the vorticity equation already derived holds either for B < 1 with 6 = O(1) or 
6 < 1 with E = O(1). 

Thus, provided the boundary conditions are applied in forms valid both for 
E << 1 and e = O( 1) which is equivalent to 6 4 1, the approximations used are 
valid at both ends of the range 0 < B < 1 for a given shock shape. To find f2 as 
a function of e for a given body, one would require to extract from the above 
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family of solutions for Rb c R, < 00 those compatible with some relation between 
R,, R, and E; R, and R, denote the radii of curvature of the body and the shock 
wave, on the centre line. 

4. Solution in series 
If we concern ourselves with the solution in the vicinity of the stagnation 

point, then, replacing p,/p by a suitable mean value and assuming that h,, h, and 
h, are functions of x, only, and if we, further, define X by 

we have 

which equation is linear in $2. If we let $2 = wX,  then 

assuming @, = @,, X + . . . to first order in X. We may now define w* = w/w(O), for 
our convenience. Then 

w* = exp ( - gY#) {AYi lFl(4j, $, + BIFl($,  8, gyp)}, 

where ,F1(u, b, x )  is the confluent hypergeometric function. The boundary condi- 
tions to be applied are ~ " ( 1 )  = a, w"(0)  = 1 ;  a is still to be determined and is 
obtained from the derivative of w at Y = 1, as we show later. Since B = 1, A is 
easily obtained in terms of a. 

From the u1 momentum equation we have that 

Now ul/u, N tanO,, where 0, is the deviation of the streamline from the line of 
symmetry immediately behind the shock wave, as in figure 2; near the line of 
symmetry, we would expect 0, to vary little near the shock wave. Hence, near 
x1 = 0 and Y? = 1, we put 

a 
ax, ax, 
- N _  ap - (p$2). 

hence 

where we have used the result that ,u ,/(PIP) is invariant across the shock wave, 
where '$Irn = U, RJvm and where $2, = U, xl( 1 - e)2/ER,2. Note that, in the region 
between the body and the shock wave we were prepared to ignore variations in 
y'p to uncouple the vorticity equation from the enthalpy equation. We cannot, of 
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course, ignore the change in &I as the fluid crosses the shock wave. Hence the 
outer boundary condition on w* is to be derived from 

dw* 
dz, { 1 + Y ~ : ( 1 - ~ ) } ? f ~ s 7  

2 s m m  a ___- - --- 

where a = w ( l ) / ( l  - ~ ) ~ w ( 0 ) ;  note that w ( l ) / ( l  - E ) ,  is finite as B --f 1. Now 
dldx, = (h3pul/$s)d/d'3?, putting h, = h, = 1, and $s N ph,u,x, we have 

d 1 u d tan6, d - N -1- =--. - 
ax, X , u , a y ~  x1 dY* 

FIGURE 2. Streamline deviation near Y = 1 and z1 = 0. 

Now, tan 6, N xl( 1 - e)/sR, for constant E .  Hence, at Y = 1, 

dw* 2Bm €%a -=-- 
d Y  (1 - E )  (1 + yM%( 1 - E ) } P  

this condition enables a to be determined uniquely. We find that 

w* = exp ( - $Y#) {(0*8677a - 1.412) Yt +, $Y#) + &($, 8, $Y%)}, 

where a = 1/(3-048 + 8-945p) and 

We note that ap is bounded as p -+ 00, that is as E -+ 1 so that dw*/d\r is bounded 
and decreases monotonically from zero to - 0.2237 as sincreases from zero to one. 
Figure 3 shows w* for various values ofp; figure 4 shows J'Yddw*/dY. We note in 
passing that, as ,I3 increases, the scale of x2, that is distance in the Y direction, 
decreases. Near Y = 1, dw*/dx, decreases as p increases. 

We note that the curves for p = 10 and ,I3 = 100 are essentially coincident, and 
represent, on this simple approach, the conventional boundary-layer limit of the 
analysis. As Bush (1964) has pointed out, the limit p = 0 has no very great 
physical significance. However, we note that, as p -+ 0 ,  w* is bounded and non- 
zero for all Y .  In  particular, w * ( l )  = o( l ) /w(O)  is non-zero. Now, w(1) -+ 0 as 
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p -+ 0, whiere we take this limit to imply the limit of low Reynolds numbers. 
Hence, we see that w ( 0 )  -+ 0 as we would expect. Further 

~(0,/3)/0(1,/3) = (0*328-0*963/3)-1 

in an obvious notation. This gives the relation between the vorticity at the body 
surface and the vorticity at the outer edge of the viscous layer in low-Reynolds- 
numbers flow. This is shown in figure 5. 

It is interesting to note that the parameter p is sandwiched, in order of magni- 
tude, between the parameters l/Kand 1/B of Bush (1964), for putting 6 - ~-1M;2, 

we have that p N e2!3tt, 46; the exponent of S comes from the assumed temperature 
dependence of p, the exponent of E from insisting that layers characterized by 
parameters 1/K = E%, JS and l/D = ~ 8 % ~  JS should be considered as one. We 
recall that K = O(1) characterized the viscous shock layer and B = O(1) the 
viscous body layer. 

5. Comparison with more exact analyses 
Let us now compare the predictions of the present theory with those of Bush 

(1964). First, however, we note that we may only obtain an expression for the 
skin friction as a function of Q, and, likewise, the heat transfer as a function of 
H,; the quantities !2, and H, are the values of R and H respectively at the inner 
edge of the shock-structure region, in Bush’s terminology, or at the outer edge 
of the shock layer of Cheng (1961). These quantities are not readily determinable 
for given values of E ,  M, and 8,. 

We proceed to take the work of Bush as definitive for one set of values of 
E ,  M, and noting that the similarity parameter in that analysis, 

differs from the parameter p = ~ 8 % ~  M z l  of the present analysis. We approxi- 
mate the dependence of the skin-friction and heat-transfer coeBcients on K to 
an inverse power of K and choose the dependence of R, and H, on 8, M, and 9tt, 
so that the predictions of the coefficients would be expected to agree approxi- 
mately to within a constant factor. In  this process, we ignore the dependence of 
a on p; we rely on this dependence to modify the power-law curve to fit more 
exactly Bush’s results. We determine the constant for a, particular set of values of 
E ,  H, and %a. The reasonableness of the assumptions underlying the present 
analysis must be judged by observing how well the predictions of the skin- 
friction and heat-transfer coefficients for different groups of values of B ,  M, and 

First, we define Q’ to be the vorticity distribution behind a thin shock wave 
of radius Rb or R,. Then Q’ = Urn x&R; and we let 0, = C*(E, M,, %,) a’, where 
the function C* is to be determined. Secondly, we let H be the total enthalpy of 
the free stream and let H, = C(E,  M,, 8,) H,, where C is to be determined. The 
skin-friction coefficient C,, defined by Bush, takes the value M, C*/a de in terms 
of the present analysis and the heat-transfer coefficient C,, takes the value 

agree with those of Bush. 
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ESM: H;lR, aH/i3x21y-o. For unit Prandtl number, H and Q satisfy the same 
equation so that it is readily shown that 

0 6  

05  

0 4  

0 3  
6 

0.2 

0 1  

where B is the value of H at Y = 0. Hence 

C, = (0.872 - 1.415B) B& CC*a-%Z1. 

Let us now consider axisymmetric flows. From the graph of C, against K given 
by Bush we deduce that C, varies approximately like l/,/K, that is efS2 M-9. 
Thus C* must be taken to be proportional to Mg%. Fitting the predictions 
of C, for E = 0-05, K = 1.5, we find that 

t 

- 

- 

- 

- 

- 

- 

so that 

Figure 6 shows graphs of C, determined by the present analysis expressed as a 
function of K.  We also show Bush’s results and the inverse-square-root-power 
curve. The agreement is seen to be quite satisfactory, with an error of less than 
10 yo in the range 1 < K < 7 .  

1 I I I I I I 1 -  
0 1 2 3 4 5 6 7  

K 

FIGURE 6. Variation of C, with K.  x , E = 0.05; 0, E = 0.01; -, results of Bush (1964); 
_ _ _  , ordinates proportional to 1/ JK.  

We repeat the process for C,. Bush’s results correspond to B = 0 so that 
C, = O-S72M$ CC*/a91w, and correspond to a Prandtl number of 3; our analysis 
requires that the Prandtl number is unity. In order to make any comparison at 
all, we are obliged to  assume that Prandtl number plays a minor role provided it 
is of order unity. The effect is that our predictions concerning the quantity H, 
will be slightly in error. From Bush’s graph, we find that C, N K 4  so that 
C N S$&M;Y. Again, fitting a t  E = 0.05, K = 1.5, we find that 

H, = 0.72%& E-%M;VH,. ( 7 )  
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Figure 7 shows values of C, determined by the present analysis expressed as a 
function of K.  The agreement here is very satisfactory, the error being less than 
1 yo for 1-5 < K 6 7 .  The degree of agreement leads us to infer that the expres- 
sions ( 6 )  and (7 )  for the vorticity and total enthalpy at the inner edge of the shock- 
structure region should give quite reasonable estimates of these quantities in the 
actual flow, quite apart from providing the appropriate outer boundary condi- 
tions for more or less accurate values of skin friction and heat transfer, subject 
to the remarks above concerning Prandtl number. 

0 4  

0.3 

6 
0 2  

0 1  

- 

- 

- 

- 

4 

0 1 2 3 4 5 6 7  

K 

- - -, ordinates proportional to K-2. 
FIGURE 7. Variation of C, with K.  x , E = 0.05; 0, 6 = 0.01; -, results of Bush (1964); 

It is interesting to note that expressions ( 6 )  and (7 )  may be written in the form 

= Ak*(EMz)-s UX, Ry2 

and H, = 0 . 7 2 k f ( ~ M ~ ) - ~ s ~ H , ,  

where k = dJtm is the parameter K 2  of Cheng (1961). From Cheng's results, we see 
that, on his model, EM: is a function of k only, for given free-stream conditions. 
Thus Q, and H, are determined in terms of k alone so that we may make a direct 
comparison with the values calculated by Cheng. Only one set of results reported 
by Cheng, those displayed in his figure 5.3 corresponding to a Prandtl number of 2, 
are suitable for comparison; in these, the value of E is 0.25, which is perhaps 
hardly sufficiently small to satisfy the condition E < 1. However, the values of 
Q, and H, disagree so markedly that there can be no doubt that expressions (6) 
and (7 )  in no way represent the actual values of vorticity and total enthalpy at 
the inner edge of the shock-structure region. In particular, the present analysis 
assumes that Q increases monotonically from the outer edge of the flow field 
inwards, which is not the case in the results presented by Cheng in figure 5.3. 

We may conclude, however, in view of the good agreement over a fivefold range 
in 8 with the results of Bush, an agreement between analyses with different 
dependence on 6,  M, and '&,, that the replacing of u1 by ,/{2@s Q(x, ,  0) Y/p} in 
the von Mises transformation in some sense mirrors reality in flows with E < 1. 
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6. Solutions away from the stagnation point 
It will be noted that we have chosen the co-ordinate system in such a way that 

the validity of the formulation of the equation is not restricted to the stagnation 
region. Further, we might expect that the arguments for discarding the various 
terms should hold outside the stagnation region. However, the metric elements 
h,, h,, h, will, in general, be functions of x1 and x2, determined by the particular 
configuration under consideration, so that (a), with the S term deleted from the 
right-hand side, must be integrated numerically. To look for a similarly solution 
of this equation imposes an unrealistic distribution of vorticity behind the shock 
wave, as was pointed out by Hayes (1956). 
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